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Abstract 

A typical three tank process has the difficulty in controller design because of assumed non linear flow and 

interaction between tanks. This paper deals with design methodology of full state feedback (FSFB) controller 

and linear quadratic controller (LQC) with pre compensator. The performance of proposed controllers is 

compared with Zeigler-Nichols (ZN) tuned proportional plus integral plus derivative (PID) controller for servo 

and regulatory response. The FSFB controller with pre compensator yields better performance compared to 

other controllers. The transient response specifications and performance indices are compared and which 

indicates the efficacy of FSFB controller over LQC. The stability analysis is carried out using the vector gain 

margin (VGM) index and it is evident that VGM lies well within the range for LQC than FSFB controller 

Keywords: LQC, full state feedback controller, PID, State-Space model, Three tank process. 

INTRODUCTION 

The control of liquid level is a crucial problem in the process industries such as Petrochemical industries, 

paper making process or mixing process wherein series of tanks are used as processing unit. It is a 

challenging task for control system engineers to understand how the level control problem is solved. In 

order to understand the concepts of modern control theory the three tank process (TTP) is considered as 

an illustrative example. Design of State Feedback Controllers for a Nonlinear Interacting Tank Process 

and design of optimal Controllers for a Ball & Beam system is proposed by Nagammai et al [2,3]. A 

sliding mode control of MIMO system is proposed by Anouar Benamor et al [4] and which encounters 

complicated design and chattering of the manipulated variable. Fault detection and decision with Kalman 

filter applied to three tank process has been carried out by S.Abraham Lincon et al [5]. 

The disturbance rejection LQ control was demonstrated by Endre Borbély [6]. Ravi Kumar Jatoth et al 

proposed evolutionary algorithm based PID controller tuning for a TTP [7]. The mathematical modeling 

of three tank process is obtained from the mass balance equation expressed using Bernoulli’s law. The 

Zeigler-Nichols (ZN) tuned PID controller is designed for comparative study.  

The controllable companion form of state space modelling of the plant is obtained so as to design full 

state feedback controller (FSFB). A simulation of proposed controllers for three tank process is carried 

out using MatLab software. 

State Space Modeling 

The schematic shown in Fig.1 consists of three identical tanks coupled by an orifice. The input to tank 3 

is 3q (t)
 which is considered to be the disturbance variable to the system. Due to this external disturbance 

the level of tank 3 keeps varying. Hence the objective of the process is to control the level in tank 3 and 

to maintain at desired value by manipulating the inlet water flow 1q (t)
. Hence it is considered as a single 

input - single output process (SISO). 

Using the law of conservation of mass, the plant equations are expressed as given in equation (1). 

The mass balance around tank 1 is, 

 
dh 11 = f h ,h ,h = q - q

1 1 2 3 1 12dt A
 
 
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The mass balance around tank 2 is, 

   
 

dh 12 = f h ,h ,h = q - q
2 1 2 3 12 23dt A       

The mass balance around tank 3 is, 

   
 

dh 13 = f h ,h ,h = q +q - q
3 1 2 3 23 3 2dt A  

                                                               (1)    

Where  

q
1-- In flow rate to tank 1 (

3cm / sec ) 

q
2

 --- Outflow rate of tank 3 (
3cm / sec ) 

q
12 --flow between the tank1 & tank2 (

3cm /sec) 

23q
--flow between the tank2 & tank3 (

3cm /sec) 

q
3

 --- Disturbance flow to tank 3 (
3cm / sec ) 

where 

2 ( )
12 1 1 2 1 2

  q aC g h h with h h
 

2 ( )
23 12 2 3 2 3

  q aC g h h with h h
 

2 0
2 3 3 3
 q aC gh with h

 

 
Figure 1: Schematic diagram of TTP 

Table 1: Process variables and steady state values 

Variable Description Value 

g gravitational force 9.81 m2/sec 

C1 Discharge coefficient of inlet orifice 1 

C2 Discharge coefficient of coupling orifice 0.8 

C3 Discharge coefficient of outlet  orifice 1  

a Area of the connecting pipe -55x10  m2 

A Area of  each tank 0.0154 m2 

1Sh  Steady state water level of tank 1 0.5 m 

2Sh  Steady state water level of tank 2 0.45 cm 

3Sh  Steady state water level of tank 3 0.4 cm 

1S 2Sq = q
 

 Steady state flow rate 50 cm3/sec 

 

The level in each tank is considered as state variable and the inflow to 

tank1 is considered as the input variable where as the disturbance 

variable is inflow to tank3.The level in tank 3 is considered as output 

variable. The state space representation of the three tank process in 

terms of state variables is obtained as follows: 

    
 

   
X A X B u

 

     Y C X D u
 

The matrices A, B and D are, 

1 1 0

( )
1 2 1 2

( )
2 320

 
 
 
 
 
 
 
 
 
 
 
  



 


 

k k

A A

k k k k
A

A A A

k kk

A A

1

11
11

2 0
21

1 0
31

3

1

 
 
 

    
    
    
    
    
    
          

 
 
 






  







f

q
b

A
f

B b
q

b
f

q
     

 

 

 

1


aC 2g
1k

2 h - h
1s 2s

aC 2g
2k =

2
2 h - h

2s 3s

aC 2g
3k =

3
2 h

3s  

The output state equation is, 

 
1

0 0 1
2

3

 
 
 
 
 
 

h

y h

h
 

In this control design problem the Taylor’s series expansion is used to 

linearise the plant model about the specified operating point and the 

state space model of the system is given in equation (2). 

0.0322 0.0322 0 64.931 1

0.0322 0.0578 0.0257 0
2 2

0 0.0257 0.0371 0
3 3

         
                      

   

h h

h h u

h h
                           (2)                                                             

The system transfer function relating level in tank 3 to in flow to tank1 

is, 

 

  

H S 0.0543 =
3 2 -6Q S S +0.1272S +0.0035S +9.4 101                                 (3)                                                                          

Controllability property 

The state variables of the third order system are defined as: 
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x (t)= h (t)=water level of tank 3
1 3  

dh (t)
3x (t)=

2 dt  

2

2d h (t)
3x (t)=

3
dt  

The state input and state output of the third order system is defined as: 

u(t)= q (t)
1  

y(t)= h (t)
3  

Let  

x (t)= h (t)= x (t)
1 3 2  

x (t)= h (t)= x (t)
2 3 3  

x (t)= h (t)
3 3  

From equation (3) it is obtained that, 

  



-6x (t)= 9.4 10 x (t) 0.0035 x (t)
3 1 2

0.127 x (t)+0.054u(t)
3  

Thus the state space representation of the  

three tank process in controllable canonical  

form is given in equation [4]  

0 1 0

0 0 1

                                     

x x 01 1

x x 0 u
2 2

-6 1x x9.4 10 0.0035 0.1273 3       

 

 
 
 
 
  

x
1

y = 0 0 1 x
2

x
3                            (4)                                

The controllability matrix is,  

2

cQ B AB A B     

 
 
 
  

64.94 -2.6 0.17

Q = 0 2.1 -0.2c

0 0 0.05
 

The controllability property reveals that the system under consideration 

is controllable.  

 

Design of PID Controller 

The PID controller is able to provide an acceptable degree of error 

reduction along with stability and damping. In 1942 Zeigler Nichols 

proposed a tuning method using a frequency domain approach. A two 

point method is used in order to obtain the first order plus dead time 

model. In this method the time required for the response to reach 33.3% 

and 66.6% of the final steady state value is estimated. Using this data 

the delay time
 dt , process gain 

 pk
and process time constant 

 p
are determined as per the below mentioned formulae. 

1.43 328.6sec
66.6% 33.3%


 
  
 

  t tp y y
 

0.4 48.56sec
33.3%

  t t pyd
 

5744


 


y
K p

u  

The first order plus dead time (FOPDT) model thus obtained is given in 

equation (5) 

48.565744
( )

1 328.6 1




 
 

t s
d Sk e ep

G s
S Sp

                                          (5)                         

The value of ultimate gain cuk
and period of sustained oscillation uP

  

is determined using magnitude and angle criterion. The values, thus 

obtained are given below: 

0.0019Kcu   and  
0.034secPu  

The ZN-PID tuning parameters are,  

0.6* 0.0012 K kc cu  

0.017; 0.000013
2




   
P Ku cKi i

i  

0.00425; 0.028
8

    
Pu K Kcd d d

 

Design of Full State Feedback Controller  

In full-state feedback (FSFB) control technique all the state variables 

are fed- back to the input of the system through a suitable feedback gain 

matrix. In this approach, the desired location of the closed-loop Eigen 

values (poles) of the system is assumed to attain the desired transient 

behavior.  As a rule of thumb the closed loop poles are moved ten times 

far away from the open-loop poles of the measured system so as to 

achieve the desired specifications. Hence, this approach is known as the 

state feedback controller design. The system must be a “completely 

state controllable” so as to design state feedback controller. Although 

the "optimum" location of the Eigen values of the closed loop system is 

guaranteed, the robustness to parameter variations and constraints is 

also ensured. Therefore, in order to compensate for offset, a pre 

compensator is added which eliminates the steady-state error in the 

response to the step input. 

 



 

 

68 

 
Figure 2: FSFB controller with pre compensator 

The FSFB controller is composed of plant, state feedback gain matrix 

and a pre compensator. The primary need for adding pre compensator is 

to compute new reference input that increases the speed of system 

response, thus reduces the steady-state error to zero. The control law is 

given as  U rN K X . N  is the gain of the pre compensator.   

 It is desired to have overshoot of less than 3% and settling time of at 

least 0.2 seconds, which corresponds to and 
25 

d rad/sec. The closed 

loop poles p1, p2 and p3  are thus chosen as 25 25, 40  j .Now, the state 

feedback gains are obtained by solving the equation in (6) 

    det SI - A +BK =(s - p )(s - p )(s - p )
1 2 3                         (6)                                                                  

The closed loop response with FSBF controller results in large steady 

state error, and in order to compensate for this error a reference input 

compensation is included.                         

The state space model and output equation of the closed loop system 

with pre compensator is, 

790 101300 6 10

0.03 0.058 0.026

0

                                       

x x 69.941 1

x x 0 u
2 2

0.026 0.04 0x x
3 3

 
T

 
 

y = 0 0 1 x x x
1 2 3  

The Simulink model of FSFB controller with pre compensator is shown 

in Fig.2. The state feedback gains for various pole locations are 

evaluated and listed in Table 2, which indicates that as the dominant 

poles are moved farther from imaginary axis, the speed of response 

increases. 

 Table 2: Full state feedback controller gains for various pole locations 

 

 

Design of Linear Quadratic Controller 

Linear Quadratic controller plays a vital role in many control design 

methods (Wilson 1996; Zadeh 1963; Ogata 2002). The theory 

of optimal control is concerned with operating a dynamic system at 

minimum cost. In linear quadratic control problem the system dynamics 

are described by a set of linear differential equations and the cost is 

described by a quadratic function. A linear Quadratic controller ensures 

better system stability than pole placement design. 

The performance index (PI) is given by,  

[ ]
0


 

T TJ X QX u Ru dt

                                            (7)                                                                                           

Q is a positive semi-definite matrix which makes the scalar quantity 
TX QX to be always positive for all values of ( )X t  and brings all states to 

equilibrium. R is a positive-definite matrix which makes the scalar 

quantity 
Tu Qu

 to be always positive for all values of ( )U t that penalizes 

the control input.  The objective is to select the optimal state feedback 

controller gains. The selection of matrix Q & R is the designer’s choice. 

Depending on the choice of these matrices, the closed loop system will 

exhibit different set point tracking responses. Selecting ‘Q’ large, keeps 

‘J’ small, so that the states are smaller. Small values of ‘R’ make the 

control effort less, so that the performance index ‘J’ given in equation 

(7) becomes small. Larger values of ‘Q’ and smaller values of ‘R’ 

results in location of closed loop poles far away from the origin which 

guarantees relative stability. 

Consider a system described by the state space equation  

    


 X A X B u
 

     y C X d u
 

The optimal control, minimizing ‘J’ is given by the linear feedback law 

( ) ( ) U t K X t  

with 
1 TK R B P ,where ’P’ is the unique positive definite solution to the 

Continuous Algebraic Ricattic  Equation (CARE) given by               

1
0


   T TA P PA Q PBR B P

 

Let the scalar function be, ( )  TV x X PX  with ( ) 0V x  

The time derivative of ( )V x  is, ( )  T TV x X PX X PX  

Now, ( ) ( ) ( )   T TV x AX Bu PX X P AX Bu  

( ) ( )   T T T T TV x X A P PA X u B PX X PBu  From CARE we have,  
1   T TA P PA Q PBR B P  

Now,  

1( ) ( ) ( )

( )

  

 

T T TV x B PX Ru R B PX Ru

T TX QX u Ru  

Integrating ( )V x  we get 

Closed loop pole 

location 

State feedback gains Set point 

gain 

VGM 

in dB 

40& 25 25   j

 
 1.4 1560 923188

 

925410 8.5 

40& 10 10   j

 
 0.92 478 147383

 

148070 11 

40& 5 5   j   1 214 36710  37016 12.5 
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1( ) ( ) ( )
0 0

       
T T TV x dt J B PX Ru R B PX Ru dt

1(0) (0) ( ) ( )
0

T T T TJ X PX B PX Ru R B PX Ru dt
    

 

The minimum value of ‘J’ is achieved when  

1   TU R B PX KX  

The design procedure is described by the following steps: 

 The weighting matrices Q and R are selected. 

 The Continuous Algebraic Ricatic Equation (CARE) is solved 

to get P matrix. 

 The linear quadratic controller gain (K) is computed. 

 The time response of the system is simulated. 

 If the transient specifications are not met, then the weight 

matrices are tuned. 

The value of Q is chosen as, [0,0,10000]Q diag and R is varied as 

R=0.1, 0.01, 0.001. As the objective is to control the level of tank 3, 

more magnitude of weight is given to state variable x3. With this setting 

the linear quadratic controller gains and Eigenvalues are evaluated using 

the command 

[K,P,E] = lqr(A,B,Q,R)and listed in Table.3 which indicates that small 

values of ‘R’ moves the Eigen values farther from imaginary axis, 

thereby increases the speed of response. 

Table 3: Linear quadratic controller gains for various weight matrices. 

R LQR gains Eigen Values Set point 

gain 

VGM 

in dB 

0.1  0.077 6.15 307.3

 

2.6& 1.2 2.2   j

 

316.2 25.95 

0.01  0.11 13.4 980.7

 

3.8& 1.9 3.3   j

 

1000 17.59 

0.001  0.2 29.1 3120.5

 

5.5& 2.8 4.8   j

 

3162.3 7.0 

 

Stability Analysis 

According to Franklin et al (2006), vector gain margin (VGM) is a 

single margin parameter that combines gain and phase margins into a 

single measure. This quantity eliminates the ambiguities that exist with 

the gain margin and phase margin combination in analyzing stability of 

a system. The original idea of VGM was proposed by Smith (1958) as 

cited in the work by Franklin et al (2006) is adopted in this work. The 

vector margin or disk margin is the distance measured from the Nyquist 

plot of the loop transfer function, including controller to the point (-

1+j0) and the idea is illustrated graphically in Fig.3. Recent advances in 

computing facility have made measurement of VGM feasible. Due to 

difficulties in computing VGM, it was not being used in the past 

extensively. 

 

 
 

Figure 3: Stability analysis using VGM 

VGM is linked with sensitivity function 

1

1 ( ) ( )
 

 c

S
G s G s  as the 

maximum of 

1

1 ( ) pcL j
. 

 The reasonable values of VGM for good closed loop system stability 

are 

1
3.5 max 9.5

1 ( )

 
  

 
 pc

dB dB
L j

       (6)      

( )pcL j
is the loop gain at the phase cross over frequency. 

The VGM based stability assessment is carried out for the proposed 

control scheme and the results are tabulated in Table 2. The table shows 

that the FSFB controller with greater dominant pole value and linear 

quadratic controller with very small ‘R’ value yields VGM value which 

is well within the tolerance as specified in equation (6). 

Stability analysis of PID controller 

The closed loop transfer of the TTP with the controller setting as 

determined earlier is given by 

 

 

2 -5 -7H S 0.0015S +6.5×10 S +7×103 =
4 3 2 -5 -7H S S +0.127S +0.005S +7.5×10 S +7×103sp  

In order to investigate the stability of the closed loop system the Bode 

diagram is drawn and is shown in Fig.10. It is clear from the plot that, 

though the system tracks the set point the internal stability is not 

ensured because GM & PM are not finite. The VGM is calculated as 

88.3dB, which lies above the limit specified in equation (6). 

Simulation Results 

The state feedback gains and pre compensator gain are evaluated using 

MATLAB code. The open loop response of the designed system is 

shown in Fig. 4, and which indicates that, the open loop system is stable 

and non linear but set point tracking is not achievable. The transient 

response of the system with PID controller is shown in Fig.5. The servo 

response of the FSFB and LQ controller with and without pre 

compensator for various values of pole location is shown in Fig. 6 to 

Fig.9 for step change in set point. The servo regulatory response of the 

proposed controllers is shown in Fig.10. The magnitude plot of the 

closed loop system for various values of pole location is shown in 

Fig.11 & Fig.12. Further the magnitude plot indicates that the greater 

dominant pole value yields a lesser gain margin (GM).  The lesser GM 

results in greater bandwidth that leads to increase in speed of response. 

The Nyquist plot of the closed loop system with proposed controller is 

presented in Fig.14. As all the contours corresponding to the loop 

transfer function
( ) ( ) cG j G j

 do not enclose the -1+j0 point, stability 

is assured. 

  
Figure 4: Open loop response of 

three tank process 

 

Figure 5: Servo regulatory response 

of PID controller 
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CONCLUSION 

The suggested algorithm is established for a three tank process. It has 

been shown that, the FSFB controller with pre compensator tracks the 

set point in desired settling time. Also, it exhibits less overshoot than 

PID controller. The performance summary is given in Table 3 which 

indicates that, the time domain specifications are close to the desired 

specifications with FSFB controller than with conventional other 

controllers. The execution with respect to settling time, peak overshoot, 

ISE, IAE are superior over PID controller. The disturbance rejection 

capability of FSFB controller is more beneficial than other controller, 

which is evident from Fig.8. 
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Figure 6: Servo response of FSFB 

controller 

 

 

Figure 7: Servo response of linear 

quadratic Controller (LQC) 

 

 

Figure 8: Servo response of FSFB 

controller with  pre compensator 

 

 

Figure 9: Servo response of LQC 

with compensator 

 

 

Figure 10: Servo regulatory 

response of proposed Controllers 

 

 

Figure 11: Bode magnitude plot of 

FSFB controller with pre compensator 

 

 

Figure 12: Bode plot of LQC with 

compensator 

 

 

Figure 13: Bode plot of TTP with 

PID controller 

 

 

Figure 14: Nyquist plot of FSFB 

controller with pre compensator 

 

 


