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Abstract 

Background: Brain-computer interfaces that use motor imagery hold promise for direct communication and 

control through brain signals. Common Spatial Pattern (CSP) techniques have emerged as powerful tools for 

extracting discriminative features from electroencephalogram (EEG) signals in tasks requiring motor imagery. 

Objective: This survey paper aims to provide a comprehensive analysis of different CSP techniques employed 

in motor imagery BCIs, highlighting their strengths and limitations. Methods: We reviewed the literature and 

identified various CSP techniques, including Riemannian CSP, deep learning-based CSP, multiway CSP, and 

temporally weighted CSP etc. For each technique, we examined their underlying principles, algorithmic 

implementation, advantages, disadvantages, filtering technique used, classification accuracy, dataset used and 

relevant comments. Conclusion: Understanding and comparing different CSP techniques are crucial for 

enhancing the performance of motor imagery-based BCIs. Each technique has its own advantages and 

considerations, such as computational complexity and adaptability to different BCI scenarios. This survey serves 

as a valuable resource for researchers and practitioners in selecting appropriate CSP techniques to advance the 

area towards successful brain-controlled systems by enhancing the reliability and accuracy of motor imagery-

based BCIs. 

Keywords: Brain Computer Interface (BCI), Electro Encephelo Gram, Common Spatial Pattern, Motor 

Imagery.   

INTRODUCTION 

Brain computer interface systems that use motor imagery enable users to operate external devices or 

applications using their imagination of specific motor tasks, such as imagining moving their limbs[1]. 

These systems rely on capturing and interpreting the electroencephalogram (EEG) signals generated 

during motor imagery tasks. However, EEG signals are often contaminated by noise and contain a mixture 

of useful and irrelevant information. To address this challenge, Common Spatial Pattern techniques have 

been extensively utilised in motor imagery BCI for feature extraction and classification[2]. 

With various motor tasks, such as motor imagery using the left or right hand, CSP techniques seek to 

identify spatial filters that maximise differences in EEG signal patterns between two distinct mental states 

or classes of interest. The intention is to suppress irrelevant information and improve the discriminative 

information related to the motor imagery task. Finding a linear transformation, represented by a projection 

matrix, is the fundamental idea behind CSP. that converts the EEG signals into a fresh feature space with 

maximum separability for the classes of interest. The CSP algorithm achieves this by computing the spatial 

covariance matrices for each class and then deriving the projection matrix by performing an eigenvalue 

decomposition or singular value decomposition on the covariance matrices[3].  

The eigenvectors with the largest eigenvalues are chosen to be the spatial filters. These spatial filters record 

the spatial patterns or channels that are most indicative of the distinctions between the various classes of 

motor imagery. Typically, the first few filters capture the most prominent discriminative patterns, while 

the last few filters capture less discriminative patterns or noise. By using these filters, a set of CSP features 

can be created from the original EEG signals, which can then be used for additional analysis and 

classification. The extracted CSP features can be fed into a classifier, such as Linear Discriminant 

Analysis[4] (LDA), support vector machines[5](SVM), or artificial neural networks[6] (ANN), to group 

the tasks involving motor imagery.   



 

 

41 

The classifier learns the decision boundaries based on the extracted 

features and can predict the intended motor imagery task from new EEG 

signals[7]. One of the advantages of CSP techniques is their ability to 

adapt to individual differences and subject-specific characteristics[8]. By 

individually tailoring the CSP filters to each user, the techniques can 

account for variations in EEG signal patterns, electrode placements, and 

brain activation patterns across different individuals[9].  

CSP techniques have been widely applied in motor imagery BCI research 

and have demonstrated promising results in improving the classification 

accuracy and robustness of the systems. They have been applied in a 

variety of real-world contexts, including neurorehabilitation, prosthetic 

control, and assistive technologies[10]. Common Spatial Pattern (CSP) 

techniques offer a powerful technique for feature extraction and 

classification in motor imagery-based Brain-Computer Interface (BCI) 

systems.  

By identifying spatial filters that maximize the differences between motor 

imagery tasks[11], CSP enables the enhancement of relevant information 

and the suppression of noise in EEG signals. This method has 

demonstrated great promise for enhancing the precision and usability of 

BCIs for motor imagery, opening the door for creative uses in the fields 

of neurorehabilitation and assistive technologies [12]. 

The goal of the research review article "A Complete Survey on Common 

Spatial Pattern Techniques in Motor Imagery BCI" is to present an in-

depth analysis of the various common spatial pattern (CSP) techniques 

used in Motor Imagery based Brain Computer Interfaces (BCIs). 

The introduction to the article discusses the significance of motor 

imagery BCIs in facilitating communication and control for people with 

motor disabilities. The benefits and potential applications of CSP 

methods for BCI systems' decoding and classification of motor imagery 

signals are highlighted. 

The section on literature reviews thoroughly examines and summarizes 

studies that have used CSP methods in motor imagery BCIs.  Highlights 

key concepts, strategies, and variations in the application of CSP 

techniques in various studies. Comparing advantages and disadvantages 

by referenced through Table 1. 

The key findings of the review in discussion section, the performance and 

efficacy of various CSP techniques in motor imagery BCIs are analysed 

and compared. The discussion focus on emerging developments in CSP 

methodology, the different research papers analyzed in different 

parameters such as Proposed Methodology/Technique Adopted, 

CSPTechnique/Feature Extraction Technique, Filtering /Signal 

Preprocessing, Dataset, Classifier Average Accuracy referenced in Table 

2. The review paper focus on key findings from the research papers make 

the comments on various issues in CSP techniques and signal 

preprocessing. 

The key learnings from the review are outlined in the conclusion section. 

Highlights the value of CSP techniques in motor imagery BCIs and how 

they could enhance the precision and usability of these systems. The need 

for uniform evaluation metrics and procedures to allow for fair 

comparisons of various CSP techniques in future used in different real 

time applications. 

The paper concluded with a list of references that properly cited each of 

the sources used in the review. 

LITERATURE REVIEW  

In this literature review, we provide an in-depth analysis of various CSP 

techniques employed in motor imagery BCI methodology. 

A comprehensive search of relevant literature conducted using different 

sources a comparison of different CSP techniques in Table 1 indicated 

below. 

 

DISCUSSION 

The review paper discussing the different research papers and research 

findings. 

According to "EEG Based Motor Imagery BCI Using MIF And 

CSP"[48], In this investigation, motor imagery BCI using EEG combines 

MIF and CSP algorithms. The research paper suggests a methodology for 

classifying motor imagery in brain-computer interfaces (bcis) using the 

multivariate iterative filtering (MIF) algorithm and the common spatial 

pattern (CSP), and the average accuracy obtained shows the efficacy of 

the proposed approach. 

According to "Filter Bank Common spatial pattern algorithm on BCI 

Competition IV Dataset 2a and 2b"[49]. The application of the Filter 

Bank Common Spatial Pattern algorithm to the datasets 2a and 2b from 

the BCI Competition IV is covered in this article. A research paper 

suggests using the Filter Bank Common Spatial Pattern (FBCSP) 

algorithm for motor imagery classification in brain-computer interfaces 

(BCIS), but no specifics about average accuracy and classifier 

performance are given. The BCI Competition IV datasets 2a and 2b are 

used to evaluate the algorithm. 

Using the multi-class filter bank common spatial pattern algorithm for a 

four-class motor imagery BCi is the main topic of the paper "Multi Class 

Filter Bank Common Spatial Pattern For Four Class Motor Imagery 

BCI"[50]. The multi class filter bank common spatial pattern (MC-

FBCSP) algorithm is used in a research paper to introduce a novel 

approach for motor imagery classification in brain-computer interfaces 

(BCIS), but specific information about average accuracy and classifier 

performance is not given. The algorithm was created specifically to 

handle four different classes of motor imagery tasks. 

The following is an excerpt from "Determination of the Type of the 

Imagined Movement of Organs in People with Mobility Disabilities 

Using CCSP"[51]. In this study, the type of imagined movement in 

people with mobility disabilities is investigated using the CCSP. This 

research study suggests using the common correlated spatial patterns 

(ccsp) algorithm to categorise the type of imagined movement in people 

with mobility disabilities. The high average accuracy attained shows the 

effectiveness of CCSP in this application. The algorithm's goal is to 

pinpoint the precise organs or body parts that participants in motor 

imagery tasks are visualising moving. 

In "Learning Common Time Frequency Spatial Patterns For Motor 

Imagery Classification"[52]. The CTFSP Algorithm for motor imagery 

classification is introduced in this paper. According to a research paper, 

the proposed method for classifying motor imagery in brain-computer 

interfaces (BCIs) using common time-frequency spatial patterns 

(CTFSP) achieves a promising average accuracy by utilising multi-band 

filtering and sparse-CSP. To increase the precision of motor imagery 

classification, the CTFSP algorithm aims to capture both spatial and 

temporal information in the time-frequency domain. 

The following describes "Temporally Constrained Sparse Group Spatial 

Patterns For Motor Imagery BCI"[53]. The Temporally Constrained 

Sparse Group Spatial Patterns (TSGSP) Approach For Motor Imagery 

BCI is presented in this paper. The Proposed Method Achieves A High 

Average Accuracy Of 88.5% By Including Temporal Constraints And 

Using A Time Window Within CSP. Using Temporally Constrained 

Sparse Group Spatial Patterns (TC-SGSP), a research paper suggests a 

novel method for classifying motor imagery in brain-computer interfaces 

(Bcis). The algorithm seeks to identify spatial patterns that are both 

temporally and discriminatively constrained, enhancing the classification 

accuracy of motor imagery. 

The following is an excerpt from "A Novel Method For Classification Of 

Multiclass Motor Imagery Tasks Based On Feature Fusion[54]". The 

Becsp Method For Classifying Multiclass Motor Imagery Tasks is 

introduced in this study. The Proposed Method Achieves an Average 

Accuracy Of 85% By Combining Features Derived From The Bispectrum 

Entropy And Applying Common Spatial Pattern Techniques. The Use Of 
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Various Csp-Based Techniques And Algorithms For Motor Imagery Bci 

Is Demonstrated In These Papers Overall. They Experiment Different 

Scenarios To Showcase The Effectiveness Of Csp In Extracting 

Discriminative Features And Achieving Competitive Classification 

Accuracy. 

A combined approach for motor imagery-based brain-computer interface 

(BCI) using four class iterative filtering (IF) and four class filterbank 

common spatial pattern (FBCSP) techniques is presented in the research 

paper "EEG Based Motor Imagery BCI using Four Class Iterative 

Filtering and Four Class Filterbank Common Spatial Pattern" [55]. 

During motor imagery tasks, the four class IF technique is a technique for 

enhancing the discriminative information in EEG signals. To extract 

features particular to each motor imagery class, iterative filtering is used. 

Using information specific to each class, this method seeks to increase 

classification accuracy.On the other hand, the four class FBCSP 

technique is a development of the initial FBCSP algorithm. The EEG 

signals are divided into various frequency bands using a filterbank 

approach. The spatial filters are then used to extract distinguishing 

features from each frequency band. 

The filter bank common spatial pattern (FBCSP) algorithm is proposed 

in the research paper "Robust Filter Bank Common Spatial Pattern In 

Motor Imagery BCI"[56] for motor imagery-based Brain-Computer 

Interface (BCI) usage. 

The FBCSP algorithm is a popular approach that combines spatial 

filtering and frequency decomposition to extract discriminative features 

from eeg signals during motor imagery tasks. However, the original fbcsp 

algorithm may suffer from limitations in terms of robustness to noise and 

variations in eeg signals. 

The proposed "Robust Filter Bank Common Spatial Pattern" technique 

aims to address these limitations by incorporating additional robustness 

measures into the FBCSP algorithm. The specific details and 

enhancements of this technique are discussed in the research paper. 

A method for classifying multiclass motor-imagery using sub-band 

common spatial patterns (CSP) is described in the research paper 

"Multiclass EEG Motor-Imagery Classification with Sub-band Common 

Spatial Patterns[57]".The method focuses on breaking down the EEG 

signals into various sub-bands in order to record frequency-specific data 

relevant to motor imagery tasks. It extracts discriminative spatial filters 

for each sub-band using the common spatial patterns (CSP) algorithm.  

A Sliding Window Common Spatial Pattern (SW-CSP) technique is 

employed in EEG-based Brain-Computer Interfaces (BCIs) to improve 

motor imagery classification[58]. By incorporating temporal dynamics 

into the spatial filtering process, it enhances the performance of motor 

imagery classification.  

The Frequency-Optimized Local Region Common Spatial Pattern (FO-

LR-CSP) approach is a method created for EEG-based Brain-Computer 

Interfaces (BCIs) to classify motor imagery[59]. By taking into account 

the local frequency characteristics of the EEG signals, it seeks to optimise 

the spatial filtering procedure. 

A modified version of the Common Spatial Pattern (CSP) algorithm for 

motor imagery classification in EEG-based Brain-Computer Interfaces 

(BCIs) is presented in the research paper "Feature Weighting and 

Regularisation of Common Spatial Patterns in EEG-Based Motor 

Imagery[60]". The suggested method combines feature weighting and 

regularisation to boost the CSP filters' ability to discriminate. 

The research paper "Common Spatial Pattern and Linear Discriminant 

Analysis for Motor Imagery Classification [61]" investigates the use of 

the Common Spatial Pattern (CSP) algorithm and Linear Discriminant 

Analysis (LDA) for the classification of motor imagery in brain-computer 

interfaces (BCIs). The suggested methodology makes use of LDA for 

classification and CSP for feature extraction. 

Classification of multiclass EEG motor imagery using sub-band common 

spatial patterns (SBCSP-SBFS): It classifies motor imagery using 

sequential feature selection and sub-band common spatial patterns. On 

the Emotiv Epoc dataset, it achieved an accuracy of 86.50% using SVM, 

NBPW, and KNN classifiers. 

A Sliding Window Common Spatial Pattern to Improve the Classification 

of Motor Imagery in EEG-BCI: This technique measures the longest 

consecutive repetition (LCR) of predicted classes using a sliding window 

approach. Using the SW-LCR method, it was 80% accurate on the BCI 

Competition IV-2a dataset. 

Motor Imagery Using a Frequency-Optimized Local Region Common 

Spatial Pattern Approach Classification: It applies the conventional 

common spatial pattern and uses the variance ratio dispersion score 

(VRDS) and inter-class feature distance (ICFD) for frequency 

optimisation. On the BCI competition III dataset IVa, BCI competition 

IV dataset I, and BCI competition IV dataset IIb, it obtained an accuracy 

of 91.68% using SVM. 

EEG-Based Motor Imagery BCI: Feature Weighting and Regularisation 

of Common Spatial Patterns The common spatial pattern is subjected to 

feature weighting and regularisation (FWR) techniques in this method. 

On the BCI Competition III Dataset IIIa and IV Dataset IIa, it used notch 

filtering and obtained precise results using linear discriminant analysis 

(LDA). 

"Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-

Computer Interface Classification[62]". The transfer kernel CSP 

(TKCSP) method, based on transfer kernel CSP and widely used spatial 

filters, is introduced.  

The research paper discusses the various CSP techniques that are 

primarily used in Motor Imagery BCI that perform the various feature 

extraction methods that improve the classification accuracy and mean 

kappa value. However, compared to other paradigms present in BCI, 

average accuracy is most important for movement-based BCI technology 

in every part of BCI, most specifically signal preprocessing, Feature 

Extraction, and Classification. 

Here, we discussed the findings of various standard research papers that 

mainly focused on improving classification accuracy by using the various 

data sets, filtering techniques, methodologies, and classifiers listed in 

Table 2 below. Web interface applications[63], neurodegenerative 

issues[64], hands-free and personal thought translation[65], BCI 

wheelchair, spellers[66], and neuroimaging[67] were a few of the varied 

applications for Motor Imagery BCI. 

CONCLUSION 

In conclusion, this survey paper thoroughly reviewed a variety of 

common spatial pattern (CSP) techniques in the context of motor 

imagery-based Brain-Computer Interfaces (BCIs). Traditional CSP, 

Riemannian CSP, deep learning-based CSP, multiway CSP, and 

temporally weighted CSP were among the techniques that were 

examined. Based on its methodology, CSP implementation, filtering or 

signal preprocessing, dataset used, classifier used, and average accuracy 

attained, each technique was assessed. 

It is clear from the analysis of the research papers under discussion that 

CSP techniques are essential for motor imagery BCI applications. These 

techniques enable the extraction of discriminative features from 

electroencephalogram (EEG) signals, which enables the precise 

classification of motor imagery tasks. The papers that were reviewed 

demonstrated the use of various CSP techniques to produce high average 

accuracies that ranged from 70% to 95.29%. 

The reviewed literature also demonstrated the variety of CSP techniques, 

with each technique offering unique benefits and considerations. Based 

on criteria like computational complexity, adaptability, and performance 

requirements for their particular applications, researchers and 

practitioners can choose the best CSP technique. 
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The study also demonstrated how crucial signal preprocessing and 

filtering methods are for improving the functionality of CSP-based motor 

imagery BCIs. Before applying CSP, preprocessing the EEG signals with 

band-pass filtering, multi-variate iterative filtering, and Chebyshev Type-

II causal filters were some of the techniques that were frequently used. 

This survey paper provides a thorough overview of the existing literature 

on CSP methods in motor imagery BCI, making it an invaluable tool for 

researchers and practitioners. It provides a clear understanding of the 

advantages, disadvantages, and potential uses of various CSP techniques, 

assisting in the decision-making process for choosing and putting into 

practise the most effective strategy for achieving high accuracy and 

effectiveness in motor imagery BCIs. 

The literature review concludes by showing the value of CSP techniques 

as useful tools for feature extraction and classification in BCIs that 

employ motor imagery. More research and advancements in CSP 

methodologies are anticipated to support the ongoing development and 

improvement of motor imagery-based BCI systems, ultimately enhancing 

the communication and control abilities for people with motor 

disabilities. 
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List of Abbreviations 

MIF: Multi variate Iterative Filtering. 

FBCSP: Filter Bank Common Spatial Pattern. 

SFS: Sequential Forward Selection Feature algorithm. 

CCSP: Common Correlated Spatial Patterns. 

CTFSP: Common Time-Frequency Spatial Patterns. 

TSGSP: Temporally Constrained Sparse Group Spatial Patterns. 

BECSP: Bispectrum Entropy Common Spatial Pattern. 

FC-IF: Four Class Iterative Filtering. 

FC-FBCSP: Four Class Filter Bank Common Spatial Pattern. 

SBCSP-SBFS: Subband Common Spatial Pattern with Subset Band 

Frequency Selection 

LCR: Longest Consecutive Repetition 

SW-LCR: Sliding Window Longest Consecutive Repetition approach 

VRDS: Variance Ratio Dispersion Score 

ICFD: Inter-Class Feature Distance. 

Table 1: Literature Review on different CSP techniques used in Motor Imagery BCI 

S. No CSP Technique Description Advantages  Disadvantages 

1. Conventional Common 

Spatial Pattern (CSP) [13] 

Identifies spatial filters that maximize differences 

between motor imagery classes, enhancing 

relevant information and suppressing noise. 

Effective in enhancing 

discriminative 

information. 

Requires manual selection of 

spatial filters, limited to two-

class classification. 

2. Weighted CSP [14] The weighted CSP algorithm is a development of 
the original CSP technique that gives each channel 

a different weight based on their ability to 

discriminate. 

Improves classification 
accuracy compared to 

original CSP 

Computationally more complex 

3. Recursive CSP [15] The recursive CSP algorithm is a variant of the 
original CSP technique, which updates the 

projection matrix recursively to allow for dynamic 

changes in the EEG data. 

Can handle non-
stationary and dynamic 

changes in EEG data 

Can result in over fitting 

4. Filter bank CSP [16]  The CSP algorithm is a modification of the 

original CSP technique that divides the EEG data 
into various frequency bands using a bank of 

bandpass filters. Then, using the CSP method on 

each frequency band separately, non-stationarity 

in the EEG data can be handled more effectively. 

Can handle non-

stationary and different 

frequency bands 

Computationally more complex 

5. Joint CSP [17] A modification of the original CSP method that 

enables the combining of EEG data from various 

modalities, such as EEG and fMRI.  

Can handle multiple 

modalities and improve 

classification accuracy 

Computationally more complex 

6. Riemannian CSP [18] Considers the Riemannian geometry of 

covariance matrices to improve spatial filtering 

Better modeling of EEG 

data, improves 
discriminative power of 

spatial filters 

Increased computational 

complexit 
 

 

 

7. Deep Learning-based CSP 

[19] 

Utilizes deep neural networks to learn hierarchical 

representations of EEG data  

Automatically learns 

discriminative features, 

potential for capturing 
complex spatial and 

temporal patterns 

 

Requires a large amount of 

training data and computational 

resources 

8. Multiway CSP [20] Extends CSP to handle multi-class motor imagery 

tasks, enabling classification of multiple classes 

simultaneously 

Enables classification of 

multiple motor  

Increased complexity in 

handling multiple classes, 

requires a larger number of 
trials 
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9. Temporally Weighted CSP 

[21] 

By taking into account the temporal dynamics of 

EEG signals, incorporates temporal information 

into CSP. 

Considers temporal 

dynamics, captures time-

varying patterns, 
improves classification 

performance 

 

Increased computational 

complexity, may require 

additional parameters for 
temporal weighting function 

10. Sparse CSP [22] The sparse CSP algorithm is a variant of the 

original CSP method that imposes sparsity 

constraints on the spatial filters, resulting in a 
more compact and interpretable representation of 

the EEG data 

Can result in more 

compact and 

interpretable spatial 

filters 

 

More computationally complex 

than the original CSP method 

11. Extended CSP [23] The extended CSP algorithm is a modification of 

the original CSP method that allows for the 
incorporation of prior knowledge about the spatial 

distribution of the EEG sources, such as 

anatomical or functional constraints. 

Can incorporate prior 

knowledge about the 

spatial distribution of 

the EEG sources. 

 

Requires additional information 

about the spatial distribution of 
the EEG sources. 

12. Regularized CSP [24] Extends traditional CSP by incorporating 

regularization techniques to improve stability and 

generalization performance. 

Improved stability and 

generalization 

performance of CSP 
filters 

Increased computational 

complexity as a result of 

regularize inclusion. 

13.  Geodesic CSP [25] Utilizes the Riemannian geometry of covariance 

matrices to perform CSP in the tangent space, 

considering the intrinsic structure of features. 

Utilizes the geometric 

properties of covariance 

matrices for improved 
CSP performance. 

Increased computational 

complexity due to the 

utilization of Riemannian 
geometry. 

14. Task-Related CSP [26] Incorporates task-related information, such as cue 

or task-related epochs, into the CSP algorithm to 
focus on relevant segments of the signal. 

Improved focus on 

relevant segments of the 
motor imagery signal. 

Requires additional information 

or annotations related to the 
task. 

15. Hierarchical CSP [27] Utilizes a hierarchical structure to classify motor 

imagery tasks at different levels of granularity, 
accommodating general and specific classes. 

Accommodates 

classification of motor 
imagery tasks at 

different levels of 

granularity. 

Increased complexity in 

designing and implementing a 
hierarchical classification 

framework. 

16. Common Spatial-Temporal 

Pattern [28] 

Extends CSP by incorporating both spatial and 

temporal information to enhance the 

discrimination between different motor imagery 

classes. 

Enhanced 

discrimination by 

considering both spatial 

and temporal aspects of 
motor imagery signals. 

Increased computational 

complexity due to the inclusion 

of temporal information. 

17. Frequency Band Selection 

CSP (FBCSP) [29] 

Selects specific frequency bands that are most 

informative for the discrimination of motor 
imagery classes, improving the performance of 

CSP. 

Improved specificity 

and selectivity by 
focusing on frequency 

bands relevant to motor 

imagery task. 

Requires prior knowledge or 

exploration to determine 
optimal frequency bands. 

18. Channel Selection CSP 
[30] 

Automatically selects a subset of channels that 
contribute the most discriminative information for 

motor imagery classification, reducing the 

computational burden. 

Reduced computational 
complexity by focusing 

on a subset of channels. 

May discard potentially useful 
information from non-selected 

channels. 

19. Phase-Amplitude Coupling 

CSP [31] 

Exploits the phase-amplitude coupling 

phenomenon in EEG signals to improve the 

separation of motor imagery classes by 
considering both phase and amplitude 

information. 

Enhanced 

discrimination by 

utilizing both phase and 
amplitude 

characteristics of EEG 

signals. 

Increased complexity in 

modeling phase-amplitude 

coupling. 

20.  Adapted Common Spatial 

Pattern [32] 

Adapts the traditional CSP algorithm to handle 

non-stationary EEG signals by dynamically 

updating the spatial filters during online motor 
imagery classification. 

Improved adaptability to 

non-stationary EEG 

signals. 

Increased computational 

complexity due to online 

updating of spatial filters. 

21. Deep Convolutional CSP 

(DC-CSP) [33] 

Utilizes deep Convolutional neural networks 

(CNNs) to improve the differentiation of motor 

imagery classes by automatically learning spatial 
filters from raw EEG signals. 

Automatic learning of 

discriminative spatial 

filters from raw EEG 
signals. 

Requires Ample training data 

with labels for efficient 

learning. 

22. Time-Frequency Common 

Spatial Pattern [34] 

Extends CSP to capture the time-varying spectral 

properties of the motor imagery signal by 
performing spatial filtering in both the time and 

frequency domains. 

Captures time-varying 

spectral patterns for 
improved 

discrimination. 

Increased computational 

complexity due to joint time-
frequency analysis. 

23. Sparse Common Spatial 

Pattern [35] 

Enhances the interpretability of the filters by 

incorporating sparsity constraints into the CSP 
algorithm to encourage the selection of 

discriminative spatial patterns. 

Improves the 

interpretability of the 
spatial filters. 

The addition of sparsity 

constraints has increased 
computational complexity 

24. Dual Common Spatial 
Pattern [36] 

Improves the ability to distinguish between 
different classes of motor imagery by separately 

applying CSP to two different sets of EEG 

channels and combining the resulting spatial 
filters. 

Enhances the separation 
of motor imagery 

classes by utilizing 

different sets of EEG 
channels. 

A rise in computational 
complexity brought on by the 

application of CSP separately to 

various channel sets. 

25. Discriminative Common 

Spatial Pattern [37] 

Incorporates a discriminative criterion, such as 

Fisher's ratio or mutual information, into the CSP 
algorithm to explicitly optimize the separation. 

Explicitly optimizes the 

separability of motor 
imagery classes. 

Added complexity to the 

computation as a result of the 
discriminative criterion. 
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Table 2: The Complete Overview of Different Research Papers in Increasing Classification Accuracy 

S. No Research Paper  Proposed 

Methodology/

Technique 

Adopted  

Csp 

Technique/Feat

ure Extraction 

Technique 

Filtering /Signal 

Preprocessing 

Dataset Classifier  Average 

Accuracy  

1.  "EEG Based Motor 
Imagery BCI Using MIF 

and CSP"[68] 

MIF & CSP 
algorithm 

CSP Multi variate iterative 
filtering 

BCI 
competetion –

IV dataset 2(a) 

SVM & 
LDA 

83.18% 

2. In the BCI competition 
IV Datasets 2a and 2b, 

the filter bank common 

spatial pattern algorithm 
was used.[69] 

MIBIF & 
MZRSR 

algorithm 

FBCSP Chebyschev Type-II 
causal filter 

BCI 
competition 

IV Dataset 2a 

and 2b 

SVM 90.3% 

3. “Multi Class Filter Bank 

Common Spatial Pattern 

For Four Class Motor 
Imagery BCI”[70] 

Multi Class 

FBCSP 

FBCSP Chebyschev Type-II 

causal filter 

BCI 

competetion –

IV dataset 2(a) 

SVM  

4. “Determination Of the 

Type of the Imagined 
Movement Of Organs in 

People with Mobility 

Disabilities using 
CCSP”[71] 

SFS Feature 

algorithm 

CCSP FIR filters bbci.d SVM 93.6% 

5. Understanding Common 

Time Frequency Spatial 

Patterns for the 
Classification of Motor 

Imagery" 

[72] 
 

 

CTFSP Sparse –CSP 

(SCSP) 

Multi band filtering BCI 

competition 

III dataset IVa, 
BCI 

competition 

III dataset  

Radial 

Basis 

Function 
(RBF) 

SVM 

84.57% 

26. Kernel Common Spatial 
Pattern [38] 

Applies CSP in a reproducing kernel Hilbert space 
using a kernel function, allowing for the use of 

non-linear transformations for improved 

discrimination. 

Allows for non-linear 
transformations, 

capturing complex 

relationships in the data. 

Increased computational 
complexity due to the use of 

kernel functions. 

27. Enhanced Common Spatial 
Pattern [39] 

Introduces additional preprocessing techniques, 
such as artifact removal or denoising, to enhance 

the quality of the input data before applying the 

CSP algorithm. 

Improved data quality 
through preprocessing, 

reducing the impact of 

artifacts or noise. 

Additional computational and 
processing steps required for 

preprocessing 

28. Multi-Objective Common 

Spatial Pattern [40] 

Incorporates multiple objectives, such as 

maximization of the spatial filter discrimination 

and minimization of the spatial filter complexity, 
to find a set of optimal spatial filters for motor 

imagery classification. 

Enables simultaneous 

optimization of multiple 

objectives for the CSP 
algorithm. 

Increased computational 

complexity due to the inclusion 

of multiple objectives and 
optimization. 

29. Graph Regularized 

Common Spatial Pattern 
[41] 

Utilizes graph-based regularization techniques to 

impose spatial structure or connectivity 
constraints on the CSP algorithm, enhancing the 

discriminative power and spatial. 

Incorporates spatial 

structure and 
connectivity information 

into the CSP algorithm. 

Additional computational 

complexity due to graph 
construction and regularization. 

30. Permutation Invariant 
Common Spatial Patterns 

[42] 

Addresses the permutation ambiguity problem in 
CSP by incorporating a permutation invariant 

criterion to find CSP filters that are invariant to the 

order of classes. 

Resolves the 
permutation ambiguity 

problem in CSP. 

Increased computational 
complexity. 

31. Fractional Power CSP [43] Provides better control over the sensitivity of 
spatial filters to different frequency bands. 

Improves classification 
accuracy by focusing. 

Requires selection and 
optimization of the fractional 

power parameter. 

32. Wavelet-based CSP [44] Captures spatial patterns specific to different 
frequency components. 

Allows for better 
analysis of multi-

frequency EEG signals. 

Requires careful selection and 
design of wavelet functions. 

33. Complex CSP [45] Utilizes complex-valued spatial filters to capture 
both phase and magnitude information in the EEG 

signals. 

Captures both phase and 
magnitude information, 

providing a more 

comprehensive 
representation of the 

EEG signals. 

Increased computational 
complexity due to complex-

valued operation. 

34. Dynamic CSP [46] Adjusts the CSP filters dynamically based on the 

temporal characteristics of the MI task for 
improved performance. 

Adjusts CSP filters 

dynamically based on 
the temporal 

characteristics of the MI 

task, enhancing 
classification 

performance. 

Increased complexity in 

modeling temporal dynamics 
and determining the optimal 

adjustment of CSP filters. 

35. Temporally Weighted CSP 
[47] 

Incorporates temporal information into CSP by 
considering the temporal dynamics of EEG 

signals. 

Considers temporal 
dynamics of EEG 

signals, capturing time-

varying patterns and 
improving classification 

performance. 

Increased computational 
complexity due to the 

incorporation of temporal 

weighting. 
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6. The paper "Temporally 
Constrained Sparse 

Group Spatial Patterns 

for Motor Imagery 
BCI"[73] 

TSGSP Time Window 
within CSP 

Band Pass Filtering BCI 
competition 

III Dataset III 

a, BCI 
competition 

IV Dataset  2 

a & 2b 

Linear 
SVM 

88.5% 

7. "A Novel Method for 
Multiclass Motor 

Imagery Tasks 

Classification Based on 
Feature Fusion" [74] 

BECSP Bispectrum 
Entropy 

Common Spatial 

Pattern 

Band Pass Filtering Data sets 2a 
and IVa from 

the BCI 

Competition 
IV and III, 

respectively. 

SVM 
Based on 

RBF 

Kernel 
Function 

85% 

8. The research 
paper "EEG Based 

Motor Imagery BCI 

using Four Class 
Iterative Filtering and 

Four class Filterbank 

Common spatial 
pattern"[75] 

FC-IF & 
FC-FBCSP 

FC-FBCSP Iterative Filtering of 
bandpass filters 

BCI 
competetion –

IV dataset 

2(a) 

SVM & 
NB 

95.29% 

9. “Robust filter bank 

common spatial pattern 

in motor imagery 
BCI”[76] 

 

RFBCSP Robust filter 

bank common 

spatial pattern 

Spatial filtering and 

band-pass filtering 

BCI 

Competition 

IV dataset IIa 
and IIb 

Naïve 

Bayesian 

79.28% 

10 "Multiclass EEG motor-
imagery classification 

with common sub-band 

spatial patterns"[77] 

(SBCSP-
SBFS) 

Common spatial 
patterns in the 

subband using 

sequential feature 
selection 

Band pass filtering Emotiv Epoc 
dataset 

(SVM), 
(NBPW), 

(KNN). 

86.50% 

11 The research paper "A 

Sliding Window 
Common Spatial Pattern 

for Enhancing Motor 

Imagery Classification in 

EEG-BCI"[78] 

(LCR) SW-

LCR. 

common spatial 

pattern 

(EMD)-based 

filtering approach 

BCI 

Competition 
IV-2a 

LDA 80% 

12 The "Frequency-

Optimized Local Region 

Common Spatial Pattern 
Approach for Motor 

Imagery Classification" 

[79] 

(VRDS)  & 

(ICFD); 

conventional 

common spatial 

pattern 

frequency 

optimization using 

filter banks 

The datasets 

for the BCI 

competitions 
III, IV, and IIb  

SVM  91.68% 

13 A study entitled "Feature 

Weighting and 

Regularisation of 
Common Spatial 

Patterns in EEG-Based 

Motor Imagery BCI"[80] 
was conducted. 

feature 

weighting and 

regularization 
(FWR) 

conventional 

common spatial 

pattern 

notch filter BCI 

Competition 

III Dataset 
IIIa and IV 

Dataset IIa 

linear 

discrimina

nt analysis 
(LDA 

89.63% 

14 "Common spatial 

patterns and linear 
discriminant analysis for 

motor imagery 

classification" [81] 

amyotrophic 

lateral 
sclerosis 

(ALS) 

 common spatial 

pattern (CSP) 

Independent 

Component Analysis 

BCI 

competition 
IV dataset I 

Linear 

discrimina
nt analysis 

(LDA 

80% 

15 “Transfer Kernel 
Common Spatial 

Patterns for Motor 

Imagery Brain-Computer 
Interface Classification.” 

[82] 

transfer kernel 
CSP (TKCSP) 

transfer kernel 
CSP 

common spatial 
filters 

dataset IVa 
for the third 

BCI 

Competition 

SVM  81.14% 

16 "Using Source 
Reconstructed Dynamics 

of EEG Time-Series, 

Towards a More Theory-
Driven BCI." [83]. 

reconstructed 
EEG time-

series 

Conventional 
CSP 

Low-resolution 
electromagnetic 

tomography analysis 

(LORETA), 
independent 

component analysis. 

EEG-BCI 
dataset 

SVM 70% 
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