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Abstract 

Acquiring of the resistance to the variant line of the drugs used in drug therapy for M. tuberculosis is becoming 

a crucial problem for the entire globe. Mutation in cord factor led to the bacterium resistant against antibiotics 

therapy. These changes drive the chromosomal mutations resultant, the drugs which are sensitive against the M. 

tuberculosis becomes the resistant via overexpression or modification of the drug target. Essential for viability 

and virulence, enzyme involved in the biosynthesis of mycolic acid represents novel target for drug development. 

This is particularly relevant to the impact on global health given the rise of MDR and XDR strains of M. 

tuberculosis.  According to the intrinsic drug resistance mechanism the unusual composition and structure of the 

bacterial cell envelop and the low numbers of the porins assign notably to the envelope’s low compound 

permeability. For better diffusion of antibiotics across the cell envelope there are require a high membrane 

fluidity. Though, the lipid-rich nature builds the cell wall exceedingly hydrophobic and prevents the permeation 

of hydrophilic compounds. Acquired resistance accomplish when a bacterium has the ability to resist the activity 

of an antimicrobial agent to which it was previously susceptible. The acquisition of the acquired resistance 

follows up the case of successful gene mutations. Although M. tuberculosis has low genetic diversity as compare 

to the other pathogens but the genetic diversity of the M. tuberculosis can influence multiple aspects in therapy 

of drug resistance tuberculosis. From mono drug resistant to MDR and XDR, is threatening to make TB once 

again an untreatable disease if new therapeutic option does not soon become available. 

Keywords: Drug Resistance Tuberculosis (DR-TB), Multiple Drug Resistance (MDR), Membrane 

Fluidity, Cord Factor, Antibiotics Therapy. 

INTRODUCTION 

Tuberculosis (TB), is an airborne, communicable but curable disease when diagnosis at time which is 

major threat for the entire health sector and classified as a very crucial public health concern by the World 

Health Organization in 1993. The most affected part are human’s lungs refers to the pulmonary 

tuberculosis, on the other hand the extra pulmonary tuberculosis affects the other part of the body like 

brain, spinal cord, lymph node, heart etc., infection of other organ causes a wide range of symptoms [1]. 

People those, don’t have any symptoms represents a latent stage of the tuberculosis called latent 

tuberculosis [2]. In untreated cases about 10% of latent tuberculosis progress to active stage of tuberculosis. 

Active TB is an illness in which the bacterium rapidly multiply and invades into different organs of the 

body [3].  

The etiological bacterium called as Koch’s bacillus named after Robert Koch who first discovered it in 

1882 [4]. M. tuberculosis have presence of waxy coating in cell wall that provide it acid-fast property with 

mycolic acid, play a major role as virulence factor. This coating makes the cell impervious to gram stain, 

so acid-fast stain is used instead of gram stain [5].  

One of the deadliest infectious diseases, with an estimated 1.3 million deaths globally in 2016, down from 

1.7 million in 2000. In 2016, 10.4 million cases of tuberculosis were reported. Cases no. of 0.49 million 

were reported for MDR TB, which is a major global health problem this requires second line antibiotics 

treatment, that are less effective, more toxic and more expensive.                 
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Drug resistant-TB can develop in 1° and 2° drug resistant TB. Primary 

DR-TB occurs in person who are initially infected with resistant 

organism; while secondary DR-TB or acquired resistance TB, develops 

during tuberculosis therapy, either because the patient was treated with 

an inadequate regimen, did not take prescribed regimen appropriately or 

because of other condition such as drug mal-absorption or drug-drug 

interactions that lead to low serum level [6,7]. Circumstances in which an 

exposed person is at an increased risk of infection with drug resistant 

tuberculosis includes, exposure to a person who has known drug-resistant 

TB disease, exposure to a person with TB disease from an area in which 

there is a high prevalence of drug resistance or travel to one of these areas, 

exposure to a person who had been took drugs irregularly and incorrectly. 

encephalopathy, meningitis/encephalitis, and acute Guillain-Barre 

Syndrome are some of the neurological complications reported with 

COVID-19 [10,11]. This review is aimed at the study of Covid-19 infection 

and its neurological manifestation. Before starting the neurological effect, 

we will discuss what COVID-19 is, from which family it belongs and 

how it is spread and what are general effects of COVID-19 are. 

MDR-TB is caused by strain, that resistant to the 1st line antibiotics 

includes, isoniazid (INH), rifampicin (RIF), and ethambutol (EMB), and 

in case of XDR-TB, strain is resistant to 1st line antibiotics with any 

fluoroquinolone and at least 2 or 3 injectable second-line antibiotics such 

as, amikacin, kanamycin, capreomycin [8,10].  

The 1st anti-TB drug was streptomycin, discovered in 1994 but it was 

soon understood the evolution of acquiring resistance rendering 

streptomycin ineffective [11,12]. The first combined therapy was 

introduced by the British Medical Research Council, in which 

streptomycin with para-amino salicylic acid used for treatment of 

pulmonary tuberculosis [13,14]. Discoveries of anti-tuberculous antibiotics 

changed the scenario to treat the tuberculosis disease. Direct Observed 

Therapy Short Course (DOTS) a short period antibiotics treatment which 

started by World Health Organization for 6 months or 18 months course 

duration according to the strain which is responsible for tuberculosis 

disease in patient [15,16]. Significantly mutation in TB bacteria genome 

also effects the treatment with the cellular changes within human body. 

The mutation effects on drugs makes the drug resistant to the bacterium 

by inhibiting the mechanism of the drugs, e.g.  the bacterium acquiring 

mutation in rpoB, katG, inhA gene which codes for respectively β subunit 

of RNA polymerase, catalase/peroxidase enzyme and NADH dependent 

enoyl-acyl carrier protein (ACP) reductase enzyme responsible for 

synthesis of mycolic acid present in the cell wall of bacterium [17-20]. 

 

Table 1: Pathogenesis of M. tuberculosis in human body 

S. No. Pathogenesis 

1.1 Determinants of pathogenicity: -  
Cord factor [glycolipid derivatives of mycolic acid a virulent factor] responsible for inhibiting phago-lysosome formation and 

allowing intracellular survival of bacilli after ingestion by macrophages. 

Inhibits the migration of polymorph nuclear leucocytes and elect’s granuloma formation. 

1.2 Immunological aspects: - 

Delayed or type IV hypersensitivity recognized. 

granuloma formation occurs with subsequent decreases in the number of bacilli. Some remain for viable or dormant for many 
years in viable or dormant stages. This stage is called latent TB infection; an asymptomatic, and radiological undetected stage. 

Pathogen associated molecular patterns [PAMPs] binds to pattern recognition receptors [PRRs] on defense cells like 

macrophages, dendritic cell, B lymphocytes, T lymphocytes and fibroblast cells. 
Defense cell of body secrets proteins called cytokines like interleukins, interferon; promotes innate immune defense such as 

inflammation, phagocytosis, activation of complement pathways. 

Inflammatory effects from excessive cytokines along with release of toxic lysosomal component of macrophages tries to kill 
the bacilli.  

Table 2: The nature of immune response following infection changes with time so that human tuberculosis is divided into primary and post primary 

tuberculosis with different pathologic features 

S.No. Type 

2.1 PRIMARY TUBERCULOSIS 
Primary infection in lungs, tonsils, intestine or skin. 

Bacilli invade and replicate within endosomes of alveolar macrophages after get entry through respiratory tract. 

Initial lesion has shown in the primary site of infection in the lungs, called ghon focus. 
Dendritic cells picked bacilli which are transport them to local mediastinal lymph node. 

The ghon focus together with enlarged lymph nodes forms a primary complex, which is asymptomatic and undergoes fibrosis 

(spontaneous healing) or calcification which lead to hypercreativity called tuberculin allergy against tuberculous- protein. 
The primary ghon focus complex may be in the skin with development of regional lymph nodes.  “Prosecutor warts” term 

given by anatomist with pathologist and it is an occupational disease form of tuberculosis. 

Form granuloma formation within 10 days around the infection which involves T lymphocytes releases cytokines and 
interferon with active macrophages, fibroblasts and B lymphocytes. 

Formation of granuloma causes to prevent dissemination of the mycobacteria, and provides an environment to communicate, 

cells with the immune system. 
The granuloma contains a mixture of necrotic tissues and dead macrophages which form it cheesy like appearance and 

consistency is referred to as caseous necrosis. And is responsible for cell death called necrosis. 

activated T lymphocytes CD8+ can directly kill infected cells. Whether activated macrophages in granuloma inhibit the 
replication of bacilli and consume O2 resulting anoxia and acidosis probably kills most of bacilli. But some bacilli remain for 

dormant stage, resulting post primary infection. 

2.2 POST PRIMARY INFECTION 
necrotic elements of the reaction cause tissue destruction and formation of large area caseous ion term “tuberculoma”. 

Protease liberated by activated macrophages cause softening and liquefaction if this caseous material and excess of tumor 

necrosis factor and other immunological mediators causes the fever characteristics of the disease. 
The dissemination of bacilli to lymph nodes and other organ causes infection and sac lesions are develops in lower lobes of 

the lungs. 

Reactivation TB is more severe in immunocompromised patients or the old age having low immune system. 

2.3 PEOPLE MAY EXPERIENCE 

Pain area: - chest 

Pain circumstances: - can occur while breathing 

Cough: - can be chronic or with blood 

Whole body: - loss of appetite, malaise, night sweat, fever 

Common condition: - loss of muscles, weight loss, shortness of breath, swollen lymph nodes 
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MECHANISMS OF DRUG RESISTANCE IN MYCOBACTERIUM 

TUBERCULOSIS 

The genus Mycobacterium have a wide range of species from which M. 

tuberculosis complex (MTC) is most well-known member to infection 

the human lungs. This species has been noted for their intrinsic and 

acquired resistance to a wide array of antibiotics. The lipid rich cell well, 

low compound permeability, membrane fluidity, water filled porins, 

enzymatic actions and mutations in nucleoid shows the intrinsic and 

acquired antibiotics resistance mechanisms respectively [21-23]. 

Antibiotics injected into the body through oral route primary, which are 

able to penetrate cell wall but they are destroyed by enzyme or bypass 

that make them ineffective. Many studies have been done on a different 

species of genus Mycobacterium such as M. smegmatis an used because 

it's genome (roughly 1.5 times the size) equal to M. tuberculosis, with this 

lower pathogenicity, biosafety requirements and faster growth properties 

provide it another advantages to research to use this strain. Therefore, 

results of these studies directly correlated to M. tuberculosis.   

Intrinsic drug resistance mechanism 

Several classes of antibiotics have been attributed to the intrinsic 

mechanism of resistance. The intrinsic resistance mechanism provides 

the TB bacillus with a high background of drug resistance which makes 

the development of new drugs more difficult.  

cell permeability for drug penetration 

The cell wall of M. tuberculosis is much thicker and lipid-rich in nature 

due to the presence of unique fatty acid i.e., mycolic acid, renders the cell 

extremely hydrophobic and prevents the permeation of hydrophilic 

compounds or antibiotics. Also, low number of porins significantly 

makes the cell envelop less permeable which functions as effective 

barrier for drug penetration. The constituents of the cell structure of the 

M. tuberculosis are peptidoglycan the innermost layer is covered by a 

layer of arabinogalactan both are covalently linked to the mycolic acid 

and forms a mycolic-arabinogalactan-peptidoglycan (mAGP) complex is 

essential for the viability of mycobacterium tuberculosis and maintain the 

robust basal structure supporting the upper myco-membrane [24]. This 

complex also makes a hydrophobic barrier restricting the entry of 

hydrophilic molecules. It is thought that some small hydrophilic 

compounds or antibiotics can only transverse via water filled porins. 

These porins might play a role in diffusion of hydrophilic antibiotics 

across the cell wall of M. tuberculosis. The major porin MspA of M. 

smegmatis was expressed in M. tuberculosis play a role in transport of 

beta-lactamase and hydrophilic antibiotics such as norfloxacin and 

chloramphenicol etc. susceptibility of M. tuberculosis to theses 

antibiotics enhanced by the MspA, decreasing the minimal inhibitory 

concentration. This study provides the first experimental evidence that 

porins are important for drug susceptibility of M. tuberculosis. 

Bioinformatic analysis has identified Rv1698 (outer membrane protein, 

Omp), a porin in M. tuberculosis having a same function as MspA in 

participating to intrinsic resistance to hydrophilic compound [25,26]. 

Membrane’s Fluidity 

Lipid bilayer's viscosity in a cell membrane called membrane fluidity. 

With including cording factor and mycolic acid in which both are 

composed of longer beta-hydroxy chain as well as shorter alpha-alkyl 

side chain. Mycolic acid provide advantage to organism against 

antibiotics and dehydration. The low permeability of the mycobacterial 

cell wall is responsible for the resistance of mycobacterium to the drugs. 

A study has demonstrated that, comparing to other actinobacteria, M. 

smegmatis (has lowest membrane fluidity), demonstrated by a study. 

Allows less influx of lipophilic drugs i.e., norfloxacin, 

chenodeoxycholate when grown at high temperature. Exposure of M. 

smegmatis to subinhibitory concentration of ethambutol increases the rate 

of diffusion of compounds across the cell membrane, demonstrated in 

study [27]. This provides the circumstance for novel drug combination 

therapies, as using the ethambutol with the M. smegmatis can render M. 

tuberculosis susceptible against drugs [28]. 

Enzymatic Action to Inactivate Drugs in Mycobacterium tuberculosis 

The mode of resistance involves enzyme that retarded the activity of the 

drugs. Several enzymes were coded by bacteria that degrades or modified 

the effect of antibiotics and targeting such enzymes is novel approach that 

can help therapy effectiveness to combat against resistance problem.  The 

most prominent enzyme is β-lactamase which is encoded by the Blac 

gene, localise to the periplasmic space, or anchored in the outer layer of 

the plasma membrane as a lipoprotein or unbound; enzyme causes the 

degradation of β-lactam antibiotic i.e., penicillin, ampicillin, cefazolin, 

cefotaxime, imipenem, ceftazidime. Beta lactamase enzyme hydrolyse 

amide group of Beta lactam ring [29]. The M. tuberculosis β-lactamase 

also show broad spectrum substrate specificity even against new 

antibiotics like carbapenem (including imipenem and meropenem). The 

activity of the β-lactamase is inhibited by some agents such as clavulanate 

sulbactam and m-amino-phenylpyruvate [30]. Combining this agent with 

a beta-lactamase susceptible antibacterial use to tackle infections causing 

organisms which producing this lactamase enzyme, decreased turnover 

rate is result of the beta-lactamase sensitive antibiotic and enhances its 

antibacterial activity. However, some isolates causing MDR and XDR 

tuberculosis shows resistant to these agents. This hypothesis still needs 

further assessments [31]. 

Methylation, acetylation of aminoglycoside or cyclic peptide group’s 

antibiotics are chemical methods which uses to tackle MDR TB by the 

modify intracellular survival protein (Eis). The mycobacterium has 

strategies to evade the killing mechanisms applied by the macrophages 

and acquires enclosed environment within its host cell to avoid the 

humoral and cell mediated immune response. The Eis (Rv2416c) gene 

has been identified to code a secretary protein which enhances 

intracellular survival of Mycobacterium smegmatis in the macrophage 

cell line. 4 proteins; adenosyl homocysteinase, aspartate 

carboxyltransferase, putative thiosulfate sulfotransferase and universal 

stress protein present in resistant as well as sensitive strains of 

tuberculosis. MALDI-MS used for identification of the intracellular 

MDR and sensitive isolates revealed that majority protein are common 

which expressed in the extracellular state belonged to intermediary 

metabolism and respiration category. Hydrolysis of S-

adenosylhomocysteine (SAH) into free adenosine and L-homocysteine 

catalysed by adenosyl homocysteinase (SAHH) in which SAH is by-

product of SAM-dependent methyltransferase reactions. Methylation 

plays a role in cellular process including DNA replication and repair 

system, metabolism of methionine and phospholipid biosynthesis [32]. 

Aspartate carboxyltransferase or transcarboxylase (AT Case) catalyses 

the pyrimidine biosynthesis. Putative thiosulfate sulfotransferase 

Rhodanese-like protein and much more functional information is not 

available. Proteomic and transcriptomic analysis of these proteins are 

significantly upregulated under hypoxic condition and in response to 

nitric oxide and carbon monoxide, as well as during M. tuberculosis 

infection of macrophage cell lines suggesting their probable role in 

persistence or intracellular survival [33]. 

During the intracellular state MDR tuberculosis shows the adenosine 

kinase activity which catalysis the phosphorylation of adenosine is 

essential for the cellular level regulation of adenosine and its nucleotides 

because during the intracellular state bacilli are not metabolically inactive 

but maintain a low-level metabolism to tide over the unfavourable 

condition [34]. Glucose-6-phosphate isomerase (PGI) have essential role 

in glycolysis and gluconeogenesis. Glucose auxo-trophy results in 

interruption of PGI gene [35]. During the intracellular state, significantly 

glycolytic enzymes level increase due to the metabolic shifting from the 

strict aerobic mode to anaerobic metabolism. During this state about 70% 

energy is derived from the glycolysis. Thus, these enzymes being central 

to the bacilli survival, and attractive target for the drug designs. Eis has 

been demonstrated to acetylate and methylate to inactivate the clinically 

relevant second line injectable aminoglycoside and cyclic peptide drug 

kanamycin and capreomycin [36,37]. 

Drug Efflux System 

Both the pathogenic and non-pathogenic proposed a several types of drug 

efflux pump system to move   lipophilic drugs out of the cell to prevent 
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being killed by the drugs. Efflux system play a key role in surviving the 

bacterium in intracellular macrophage state [38].  These system results in 

low intracellular regimen of the drug that makes the drug ineffective. 

Some early study shows that the mycobacterium has a multitude of 

different efflux system belonging to the ATP-binding cassette [39,41]. 

Mycobacterial efflux systems are able to extrude nearly all ant 

tuberculous drugs including, streptomycin, rifampicin, isoniazid, 

clofazimine, ethambutol etc [42]. 

Modification of Antimicrobial Targets 

Some organisms (e.g., Streptomyces spp.) produce a product 

(Streptomycin; macrolides, clinolamides, and streptogramins) is naturally 

used antibiotic in treatment of tuberculosis. The resistant strain of 

mycobacterium has a reprogramming camouflaging critical target sites to 

avoid recognition. Therefore, presence of antimicrobial compound led to 

no binding with inhibition take place. This strategy has been observed in 

Mycobacterium spp. against streptomycin (modification of ribosomal 

proteins or of 16s rRNA) [43,44]. Resistance in Streptomyces spp. against 

antibiotics through methyltransferase which methylate the adenosine 

residue 2058 of the 23S rRNA. This modification prevents aforesaid 

products from binding to ribosome and inhibiting translation. Resistance 

to various macrolide antibiotics confers monomethylating resistance. The 

genome of M. tuberculosis encodes the methyltransferase Erm37 is able 

to monomethylate residues 2057-2059 of the 23S rRNA [45]. 

Acquired Drug Resistance Mechanism 

Obtaining an ability to resist the activity of a particular drug by the 

bacterium to which it was previously sensitive causes the mutation of 

genes involved in normal physiological and cellular process and 

structure. The majority of acquired resistance in M. tuberculosis is 

governed by mutation in chromosome through various mode of horizontal 

gene transfer which prevalent among in bacterial biofilms. Changes in 

bacterial genome through mutation or horizontal gene acquisition or 

change in the nature of proteins expressed by the organism may lead to 

an alteration in the structural and functional features of the bacteria 

involved, which may result in changes leading to resistance against a 

particular antibiotic, known as acquired resistance.  

The following headings details the mutations mediating resistance to 

each of the anti-TB drugs  

Isoniazid 

Isoniazid or iso-nicotinic acid hydrazide activated by the 

catalase/peroxidase enzyme which is coded by the KatG gene. This 

antibiotic inhibits the synthesis of mycolic acid through the NADH-

dependent enoyl-acyl carrier protein (ACP) reductase enzyme encoded 

by inhA gene [46,47]. The isoniazid resistance is acquired by the katG or 

inhA gene. Most common resistance mechanism is identified as the katG 

S315T leads to decrease isoniazid-NADH substrate affinity. Mutation 

occurring in inhA gene is cross resistance to ethionamide. This 

mechanism is associated with (Drug target overexpression) high-level 

isoniazid resistance in MDR isolates [48-50]. 

Rifampicin 

Rifampicin act on fast growing bacilli through slowing their metabolism. 

Mechanically this antibiotic bind to the β-subunit of RNA polymerase, 

inhibiting the elongation of m-RNA in bacterium. The bacilli acquire 

mutation in 507-533 (rifampicin resistance-determining region) of the 

rpoB gene that codes for β-subunit of RNA polymerase [51]. Resultant 

conformational changes (Drug target alteration) decrease the affinity for 

the drug and result in development of resistance. Rifampicin resistance 

always occurs in conjugation with other drugs most commonly isoniazid 

making rifampicin targets a surrogate marker of the MDR phenotype [52]. 

Ethambutol 

Ethambutol acts as bacteriostatic agent against multiplying bacilli 

interfering with the biosynthesis of arabinogalactan in the cell wall of 

bacterium. Mutation in codon 306 of embB gene lead to emergence of 

resistant mechanism to ethambutol in tubercle bacilli. embLAB is a 

specific operon system which recognized for coding of arabinose 

transferase enzyme which involve in arabinogalactan synthesis [53-56]. 

Experimental study shows certain amino acid substitutions lead to 

ethambutol resistance [57]. Decaprenyl phosphoryl-β-D-arabinose 

biosynthetic pathway and utilization pathway are disturbed by the 

mutation occurring in embB and embC causes variable MIC range for 

ethambutol. Alteration in embB gene does not cause high level of 

ethambutol resistance. Mutation in ubiA gene that encodes for 

decaprenyl-phosphate 5- phospho- ribosyl transferase synthase (which 

involved in cell wall synthesis). A embB gene reported, that cause 

ethambutol high resistance [58,59]. 

Fluoroquinolones 

In M. tuberculosis type 2 topoisomerase (DNA gyrase) is formed by two 

α and β subunits, coded by gyrA and gyrB, which catalyzes the 

supercoiling of DNA. The fluoroquinolone group includes, old 

generation drugs ciprofloxacin and ofloxacin are synthetic derivatives of 

nalidixic acid governs the resistance by chromosomal mutation 

associated with quinolone resistance-determining region of gyrA and 

gyrB gene. Both the antibiotics prevents the transcription during cell 

replication [60,62]. A recent analysis revealed low level resistance to new 

generation fluoroquinolones [63]. 

Kanamycin, Amikacin and Capreomycin, Viomycin 

In M. tuberculosis both, aminoglycosides group include kanamycin, 

amikacin and cyclic peptide with capreomycin and viomycin inhibits the 

protein synthesis by their mode of action on 16S rRNA. These drugs are 

use as second line drugs in treatment of drug resistant TB [64]. 1400bp 

region of Rs gene mutation is common, found against kanamycin and 

amikacin resistance mechanism. However, capreomycin and viomycin 

binds with the same site of ribosomes. These antibiotic shows the 

resistance mechanism by the mutation in tlyA gene that codes rRNA 

methyltransferase that show specificity for the 2’-O-methylation of ribose 

in rRNA. Mutation in tlyA loses the methylation activity [65]. Cross-

resistance in kanamycin, amikacin and capreomycin has also reported. 

Inhibition of translation by drugs lead to cross resistance between them 

is occur likely. The bacterium conserves an Eis gene which codes for 

aminoglycoside acetyltransferase, signifies a genetic alteration in the 

promotor of this gene. Enzyme, aminoglycoside acetyltransferase 

produces an overexpression of protein and figure out the low-level of 

resistance to kanamycin but not amikacin. About 80% clinical isolates 

evaluated and having low-level resistance to kanamycin had mutations in 

the Eis promoter [66,67]. 

Pyrazinamide 

Pyrazinamide converted to pyrazino acid an active form by an enzyme 

pyrazinamide or nicotinamides (PZase) [68]. This drug has ability to 

inhibit dormant bacilli in acidic environment such as TB lesions [69,70]. 

Pyrazinamide is analogy of nicotinamide and used for treatment that can 

reduce therapy length from 9 to 6 months. Pyrazinamide enters the 

bacterium via passive diffusion and then converted into pyrazino acid by 

PZase, which mainly inhibit the membrane transportation by disrupting 

membrane energetics. Previous studies have shown that pyrazino acid 

excreted by the efflux pump. Under acidic condition the protonated 

pyrazino acid is reabsorbed and accumulate inside the cell due to an 

inefficient efflux pump, resulting cellular damage [71]. PZase is encoded 

by the gene pncA in bacterium and the mutations occur in a 561bp region 

of open reading frame or in an 82bp region of its promotor region [72-74]. 

However, mutation in pncA or its promotor region didn't show in some 

Paz resistant strain [75]. 

P-Amino Salicylic Acid 

Para-amino salicylic acid, an analogue of para-amino benzoic acid, was 

first used in treatment of tuberculosis    in combination with the isoniazid 

and streptomycin [76]. P-amino salicylic acid may compete with P-amino 

benzoic acid for dihydropteroate synthase, an enzyme required for folate 
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biosynthesis. mutations occurring in the tlyA gene, accounting for 40% of 

para-amino salicylic acid resistance resulting in decreased enzyme 

activity. A recent study demonstrated that mutations in folC, which 

encodes dihydrofolate synthase, conferred resistance in clinical isolates 
[77]

Table 3: List of most common targets of chromosomal mutation conferring drug resistance in M. tuberculosis 

Antibiotics Target gene Resistance mechanism References 

isoniazid katG Prodrug activation 
78 

 inhA Drug target alteration 
79,80,81 

 inhA promotor Drug target overexpression 
80,81 

Rifampicin rpoB Drug target alteration 
82 

Ethambutol embB Drug target alteration 
83 

Fluoroquinolones gyrA/B Drug target alteration 
84,85 

Kanamycin A rrs Drug target alteration 
86 

 eis promotor Overexpression of drug and inactivating enzyme 
87 

Amikacin rrs Drug target alteration 
86,88 

Capreomycin rrs Drug target alteration 
88 

 tlyA Drug target methylation 
89,90 

Pyrazinamide pncA Abrogated prodrug activation 
91 

P-aminosalicylic acid tlyA Drug target bypassing 
92,93 

 folC Abrogated prodrug activation 
92,93 

Linezolid rplC Drug target alteration 
94 

 rrl Drug target alteration 
95 

Clofazimine Promotor/mmpR overexpression of efflux pump Mmpl5 
96,97 

Bedaquiline Promotor/mmpR overexpression of efflux pump Mmpl5 
96,97 

 atpE Drug target alteration 
98 

CONCLUSION 

To tackle resistance in Mycobacteria, we need to developed new 

antibiotics for world health sector because antimicrobial resistance 

emergence, challenge the antibiotics therapy which is given to patient at 

a time of treatment. The problem of resistant mutants is a challenging and 

increasing the rate of death is a miserable for the entire globe. The 

resistant mechanism can reduce by the improving techniques or by 

initiating the drug designing which can be used in treating of those 

mutation that acquired by the bacterium. Now various methods like 

GENE MAPPING, NGS (Next Generation Sequencing) are available to 

diagnose of tuberculosis disease in the patient. Amino Acid Sequencing 

technique is useful tool to detect the mutated gene in codons. The problem 

of resistant mechanism can be avoided by the Chromatography by 

separating the protein molecules or amino acid from the mutant genes that 

acquired by the bacterium. Detection of proteins from a muted gene can 

be treated with the adjuvants for emphasizing the production of 

immunoglobulins, to prevent the immune system because the patient does 

not die due to the tuberculosis but mainly the rate of death becomes more 

higher in case of immunodeficiency disease like AIDS due to poor 

immune system. Developing a new formulation of drugs that can actually 

works on mutant gene can be the solution to avoid the resistance 

mechanism in therapy of tuberculosis. 
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